X بستن تبلیغات
X بستن تبلیغات
header
متن مورد نظر

ریاضی و زندگی

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ریاضی و زندگی

ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیت‌های ظاهرا پیچیده‌ نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر می‌سازند تا این نظم را توصیف کنیم» .

«علم ریاضی، قانونمند کردن تجربیات طبیعی است که در گیاهان و بقیه مخلوقات مشاهده می‌کنیم . علوم ریاضیات این تجربیات را دسته‌بندی و قانونمند کرده و همچنین توسعه می‌دهند.»

دکتر ریاضی استاد ریاضی نیز در معرفی این علم می‌گوید: «ریاضیات علم مدل‌دهی به سایر علوم است. یعنی زبان مشترک نظریات علمی سایر علوم ، علم ریاضی می‌باشد و امروزه اگر علمی را نتوان به زبان ریاضی بیان کرد، علم نمی‌باشد.»

ریاضی و زندگی

ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیت‌های ظاهرا پیچیده‌ نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر می‌سازند تا این نظم را توصیف کنیم» .

«علم ریاضی، قانونمند کردن تجربیات طبیعی است که در گیاهان و بقیه مخلوقات مشاهده می‌کنیم . علوم ریاضیات این تجربیات را دسته‌بندی و قانونمند کرده و همچنین توسعه می‌دهند.»

دکتر ریاضی استاد ریاضی نیز در معرفی این علم می‌گوید: «ریاضیات علم مدل‌دهی به سایر علوم است. یعنی زبان مشترک نظریات علمی سایر علوم ، علم ریاضی می‌باشد و امروزه اگر علمی را نتوان به زبان ریاضی بیان کرد، علم نمی‌باشد.»
ماهیت :

« ریاضیات بر خلاف تصور بعضی از افراد یکسری فرمول و قواعد نیست که همیشه و در همه‌جا بتوان از آن استفاده کرد بلکه ریاضیات درست فهمیدن صورت مساله و درست فکر کردن برای رسیدن به جواب است و برای به دست آوردن این توانایی ، دانشجو باید صبر و پشتکار لازم را داشته باشد تا بتواند حتی به مدت چندین ساعت در مورد یک مساله ریاضی فکر کرده و در نهایت با ابتکار و خلاقیت آن را حل کند»
فارغ‌التحصیلان این رشته می‌توانند پس از پایان تحصیلات، در ادارات دولتی برای مسوولیتهایی که به نوعی با تجزیه و تحلیل مسائل سروکار دارند، در بخش‌ خصوصی در اموری همانند طراحی سیستمها در امر بهینه‌سازی و بهره‌وری ، در بخش صنعت برای اموری همانند مدل‌سازیهای ریاضی و در آموزش و پرورش و … ، مسوولیتهای متفاوتی را به عهده گیرند.

«رئیس اتحادیه بین‌المللی ریاضیدانان جهان در یازدهمین اجلاس آکادمی جهان سوم که اخیرا در تهران برگزار شد، عنوان کرد که بهتر است بگوییم ریاضیات و کاربردهای آن در زندگی، نه اینکه ریاضیات را به محض و کاربردی تفکیک کنیم چرا که به اعتقاد ریاضیدانها هیچ مقوله ریاضی نیست که روزی کاربردی برای آن پیدا نشود.»

«ریاضیات محض بیشتر به قضایا و استدلالها ، منطق موجود در آنها و چگونگی اثباتشان می‌پردازد اما در ریاضیات کاربردی چگونه استفاده کردن و به کارگرفتن قضایا، آموزش داده می‌شود، به عبارت دیگر در این شاخه، کاربرد ریاضیات در مسائل موجود در جامعه بیان می‌گردد»

«وقتی صحبت از ریاضی محض می‌شود نباید تصور کرد که تنها باید در گوشه‌ای نشست و به حل مسائل ریاضی پرداخت بلکه این علم ، بخصوص در مدارج بالا، ارتباط نزدیکی با طبیعت دارد به عبارت دیگر ایده‌های ریاضی از ذهن پژوهشگران نمی‌روید بلکه ریاضیدانها غالبا الهام خود را از طبیعت می‌گیرند و به قول «ژان باپتیت فوریه» ریاضیدان مشهور قرن نوزدهم فرانسه «تعمق در طبیعت، پربارترین منابع اکتشافات ریاضی است.»

عموما ریاضیات کاربردی به شاخه‌ای از ریاضی گفته می‌شود که کاربرد علمی مشخصی داشته باشد برای مثال در اقتصاد، کامپیوتر،‌فیزیک و یا آمار و احتمال کاربرد داشته باشد و ریاضی محض نیز به شاخه‌ای گفته می‌شود که به نظریه‌پردازی ریاضی می‌پردازد اما باید توجه داشت که امروزه این دو گرایش آن‌چنان در هم ادغام شده‌اندکه مرزی را نمی‌توان بین آنها مشخص کرد.

گاه یک تئوری کاملا محض وارد مرحله کاربردی شده و چون در عمل با مشکل روبرو می‌شود، بار دیگر به حوزه تئوری برمی‌گردد و در نهایت پس از رفع نقایص، دوباره وارد مرحله کاربردی می‌شود. یعنی یک تعامل و ارتباط دوجانبه‌ای بین ریاضی کاربردی و محض وجود دارد و هریک از این دو شاخه، از تجربیات شاخه دیگر به بهترین نحو استفاده می‌کند و به همین دلیل یک ریاضیدان موفق باید از هر دو شاخه اطلاع داشته باشد.»

«کاربرد ریاضی در علوم مختلف انکارناپذیر است. برای مثال مبحث آنالیز تابعی در مکانیک کوانتومی، کاربرد بسیاری زیادی دارد و یا در بیشتر رشته‌های مهندسی معادله «لاپ لاسی» که یک معادله ریاضی است، مورد استفاده قرار می‌گیرد. در جامعه‌شناسی نیز نظریه احتمال و نظریه گروهها نقش بسیار مهمی ایفا می‌کند. در کل باید گفت که همه صنایع ،‌زیر ساخت ریاضی دارند و به همین دلیل در همه مراکز صنعتی و تحقیقاتی دنیا، ریاضیدانها در کنار مهندسان و دانشمندان سایر علوم حضوری فعال دارند و آنچه در نهایت ارائه می‌شود، نتیجه کار تیمی آنهاست.»

دکتر ریاضی از اساتید دانشگاه در مورد فرصت‌های شغلی موجود در ایران می‌گوید:
«اگر در جامعه ما مشاغل جنبه علمی داشته باشند، قطعا به تعداد قابل توجهی ریاضیدان نیاز خواهیم داشت چون یک ریاضیدان می‌تواند مشکلات را به روش علمی حل کند. البته این به آن معنا نیست که در حال حاضر هیچ فرصت شغلی برای یک ریاضیدان وجود ندارد اما باید حضور ریاضیدانها در مراکز تحقیقاتی و صنعتی پررنگتر باشد.»

هرچقدر که شغل یک فرد تخصصی‌تر شود، میزان ریاضیاتی که لازم دارد، بیشتر می‌گردد.

برای مثال یک مهندس الکترونیک از آنالیز تابعی و فرآیندهای تصادفی استفاده می‌کند و یا یک برنامه‌ریز پروژه‌های اقتصادی از مطالب پیشرفته آماری مانند سریهای زمانی ، به عنوان ابزار کار یاری می‌گیرد. به همین دلیل امروزه تربیت متخصصان علم ریاضی، یعنی افرادی که قادر هستند ریاضیات مورد نیاز را آموزش داده و یا تولید کنند، اهمیت بسیار زیادی دارد. چرا که لازمه پیشرفت در تکنولوژی ، توجه به دانش ریاضی می‌باشد.

توانایی‌های مورد نیاز و قابل توصیه :

شاید مهمترین توانایی علمی یک دانشجوی ریاضی ، تسلط بر درس ریاضی دبیرستان ‌باشد که این امر صرفا زاییده علاقه شخصی به این درس است.
«این رشته نیازمند دانشجویانی است که از نظر ذهنی آمادگی جذب ایده‌های جدید را داشته باشند و بتوانند الگوها و نظم را درک کرده و مسائل غیرمتعارف را حل کنند. به عبارت دیگر یک روحیه علمی ، تفکر انتقادی و توانایی تجزیه و تحلیل داشته باشند.»

از آنجا که ریاضیات ورود به عرصه‌های ناشناخته و کشف قوانین آن است ، علاقمندی به مباحث ریاضی از همان دوران تحصیل در دبیرستان مشخص می‌شود. همین علاقمندی است که می‌تواند راه‌های بسیار سخت را برای دانشجوی این رشته هموار سازد.

یک ریاضیدان قبل از هرچیز باید جرات قدم‌گذاری در وادی ناشناخته‌ها را داشته باشد.

بطور کلی دقت ،‌تجزیه و تحلیل صحیح و صبر و پشتکار سه عامل اصلی در توفیق داوطلب در این رشته می‌باشد.

رشته‌های مختلف ریاضی جایگاه وسیعی در جامعه دارند از آن جمله : تمام رشته‌های مهندسی ، رشته‌های مختلف علوم پایه (فیزیک ، شیمی ،‌زیست‌شناسی، زمین شناسی)، پزشکی، علوم کامپیوتر، اکتشافات فضایی،‌ بازرگانی، برنامه‌ریزیهای دولتی، غالب رشته‌های وابسته به صنعت ، مدیریت و رشته‌های مختلف کشاورزی به رشته ریاضی وابسته‌اند و از آن به طور مستقیم استفاده می‌کنند؛‌ همچنین بخش بزرگی از فعالیتهای اقتصادی و تولیدی کشور در طرحهای مختلف نظیر: نفت ، پتروشیمی، حمل و نقل و … ، مستقیم و یا غیرمستقیم از ریاضی استفاده می‌کنند.

 

 

کاربرد ریاضی :

پیشرفت عظیم علم و صنعت در قرون گذشته تا حد  زیادی مرهون گسترش ریاضیات است. این گسترش را می توان به سه دوره تاریخی تقسیم نمود که هر دوره به نقطه  اوجی رسیده ،  سپس توقفی طولانی پیش آمده و آنگاه حرکت و اوجگیری مجددا شروع شده است.

ریاضیات مدون در حدود دو هزار سال قبل از میلاد مسیح به وجود آمد، لیکن ریاضیات به عنوان دانش به مفهومی که امروز برای آن قائل هستیم ،  در سرزمین  یونان و در قرنهای پنجم و چهارم قبل از میلاد مسیح ایجاد گردید. یونانیان طی لشگر کشی های متعدد با اکتشافات ریاضی و نجومی بابلی ، آشنایی یافتند و به زودی ریاضیات در شهرهای مختلف یونان موضوع بحث های فلسفی قرار گرفت و هندسه اقلیدسی نتیجه بزرگ و اساسی این دوره است که سلطه خود را در جهان دانش بشری تا قرن ها بعد حفظ نمود. با سقوط اسکندریه توقف و رکود ریاضیات در این دوره طلایی را می توان در تاریخ به وضوح ملاحظه نمود.

اشکال هندسی در زندگی همیشه دارای کاربردهای فراوان بوده و برای فعالیتهای انسان الهام بخش و سمبل نیز شده است. دایره یکی از این اشکال است. ابتدایی‌ترین کاربرد دایره ، چرخ و چرخ‌دنده‌ها هستند که از قدیم‌الایام بکار رفته و می‌روند. همچنین ابزار آلات زینتی چون تاج ، گردبند ، خلخال و حلقه‌ها ، کاربردی به اندازه تاریخ بشری دارند. نمونه مثال زدنی حلقه ازدواج است که بین زوجین مبادله می‌شود و این برگرفته از حلقه‌ای است که در دست اهورامزدا در پیکره‌ها و مجسمه‌ها دیده می‌شود.

با توجه به قرینه مذهبی قداست و پاکی ازدواج در ایران باستان را نشان می‌دهد که اکنون فرهنگی جهانی گشته است. دایره در فرهنگها ، انجمنها ، شهرسازی ، اندیشه‌های هنری و ریشه‌دار بخصوص در ابزار آلات نجومی جایگاه نمادین و کاربردی دارد. در فرهنگ و ادیان قدیم ازجمله بودا ، نماد آسمان ، جهان پاک ، افلاک گردنده و غیر دنیاست در حالی که در مقابل دنیا چهار گوشه و مربع است که به وضوح در بیان اشعار و ادبیات ایرانی بویژه غزلیات عرفانی مشاهده می‌شود.
دایره در هنرهای اسلامی ایران در هنرهای اسلامی ایرانی دایره‌ها ، به شکل شمس و حلقه نورانی در اطراف سرایمه و بزرگان دین دیده می‌شود. همچنین با توجه به کراهت صورتگری و مجسمه سازی در اسلام و ظریف اندیشی شیعه ، هنرهای اسلامی به شکلهای اسلیمی ، گل و بوته ، نقشهایی ختایی سوق داده شد. اشکال و خطوط و ترکیب رنگ در مینیاتورها ، تذهیبها و فرشها با زینت و ترکیب و نقش نگار پخته‌تری تکامل یافتند.

دایره به شکل شمسه‌های زیبایی تزیین داده شد و شمسه‌ها به صورت منفرد یا در سایر هنرها کاربرد یافت. در خطوط گل و بوته و اشکال اسلیمی و ترکیب رنگ دایره به عنوان پایه‌ای‌ترین ، اصلی‌ترین و اساسی‌ترین شکل بکار گرفته می‌شود. و سیر کلی به سوی مرکز برای وصل فنا نقطه‌ای (سیاه) است. که اختیار را از چشمان بیننده گرفته و با سیر در تابلو به مرکز هدایت می‌کند.

دایره و نقطه سیاه و قرمزدر میان قبایل بدوی و بسیاری از انجمنها و دسته‌های سری قدیم ، سمبل مفاهیمی چون ابدیت ، جاودانگی و مرگ بوده است و دایره سیاره و دوایر متحدالمرکز در تمرینات اساسی ماینه‌تیستها ، هیپنوتیستها و درمانگران حرفه‌ای می‌باشد. دایره و نقطه سرخ که اغلب نشان آفتاب می‌باشد در پرچم و سمبل ملل شرق آسیا نیز مشاهده می‌شود.

آموزش کسرها:

برای آموزش مبحث کسرها می‎توانیم از یک قطعه کاغد رنگی مربع شکل استفاده کینم.
یک کا‎غذ را ابتدا از قسمت قطر تا می‎زنیم و باز می‎کنیم، دوباره از قطر دیگر تا می‎زنیم ودوباره باز می‎کنیم . برای بار سوم از طول تا می‎زنیم و باز می‎کنیم و سپس از طول دیگر تا می‎زنیم و باز می‎کنیم. در واقع مربع را طوری تا می‎زنیم که چهار محور تقارنش دیده شود. سپس طوری تا می‎زنیم که به شکل مربع کوچک درآید.
دو طرف این مربع را تا می‎زنیم که بصورت مثلث جمع شود و بازش می‎کنیم و دولا می‎کنیم، دوباره تا می‎زنیم و باز می‎کنیم که به شکل چهار تا مثلث درآید. می‎توانیم این چهار مثلث را برگردانیم . مثلاً یکی از این مثلث‎ها را برگردانیم و از دانش‎آموز می‎پرسیم چه قسمت از شکل رنگی است؟ او پاسخ می‎دهد یک قسمت و باز سؤال می‎کنیم چند تا مثلث داریم ؟ او پاسخ می‎دهد ، ۴ مثلث داریم.
پس چه کسری از این شکل رنگی است ؟ در پاسخ می‎گوید (۴/۱) .
اگر بخواهیم دو چهارم (۴/۲) را به دانش‎آموز، آموزش دهیم دو تا از شکلها را برمی‎گردانیم . سپس از او سؤال می‎کنیم چه کسری از این شکل رنگی است. دانش‎آموز پاسخ می‎دهد ۴/۲ زیرا چهارقسمت است و دو قسمت آن رنگی است.
اگر سه قسمت را برگردانیم ۴/۳ رنگی است. اگر همه را برگردانیم چهار قسمت آن رنگی است. پس کل شکل ۴/۴ رنگی می‎شود. از دانش‎آموز می‎خواهیم چند عدد ( مثلاً ۴ عدد ) از این شکلی که را درست کرده‎ایم را درست کند. سپس آنها را روی مقوا بچسباند. از دانش‎آموز سؤال می‎کینم چند تا مثلث وجود دارد ؟
در هر مربع چهار تا مثلث و چهار تا مربع داریم. پس روی هم ۱۶ مثلث داریم.
چند تا از اینها قرمز است؟——-> 8 تا قرمز است.
چه کسرش قرمز است؟ ——-> 16/8 قرمز است.

 

 

 منبع:padida.ir

ارسال نظر