X بستن تبلیغات
X بستن تبلیغات
header
متن مورد نظر

ساختار نیروگاه اتمی

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

هیدروژن اولین و ساده ترین عنصر و پس از آن هلیم، کربن، ازت، اکسیژن و… فلزات روی، مس، آهن، نیکل و… و بالاخره آخرین عنصر طبیعی به شماره ۹۲، عنصر اورانیوم است. بشر توانسته است به طور مصنوعی و به کمک واکنش های هسته ای در راکتورهای اتمی و یا به کمک شتاب دهنده های قوی بیش از ۲۰ عنصر دیگر بسازد که تمام آن ها ناپایدارند و عمر کوتاه دارند و به سرعت با انتشار پرتوهایی تخریب می شوند. اتم های یک عنصر از اجتماع ذرات بنیادی به نام پرتون، نوترون و الکترون تشکیل یافته اند. پروتون بار مثبت و الکترون بار منفی و نوترون فاقد بار است.

ساختار نیروگاه اتمی 

ساختار نیروگاه های اتمی جهان

 

برحسب نظریه اتمی عنصر عبارت است از یک جسم خالص ساده که با روش های شیمیایی نمی توان آن را تفکیک کرد. از ترکیب عناصر با یکدیگر اجسام مرکب به وجود می آیند. تعداد عناصر شناخته شده در طبیعت حدود ۹۲ عنصر است.

هیدروژن اولین و ساده ترین عنصر و پس از آن هلیم، کربن، ازت، اکسیژن و… فلزات روی، مس، آهن، نیکل و… و بالاخره آخرین عنصر طبیعی به شماره ۹۲، عنصر اورانیوم است. بشر توانسته است به طور مصنوعی و به کمک واکنش های هسته ای در راکتورهای اتمی و یا به کمک شتاب دهنده های قوی بیش از ۲۰ عنصر دیگر بسازد که تمام آن ها ناپایدارند و عمر کوتاه دارند و به سرعت با انتشار پرتوهایی تخریب می شوند. اتم های یک عنصر از اجتماع ذرات بنیادی به نام پرتون، نوترون و الکترون تشکیل یافته اند. پروتون بار مثبت و الکترون بار منفی و نوترون فاقد بار است.

تعداد پروتون ها نام و محل قرار گرفتن عنصر را در جدول تناوبی (جدول مندلیف) مشخص می کند. اتم هیدروژن یک پروتون دارد و در خانه شماره ۱ جدول و اتم هلیم در خانه شماره ۲، اتم سدیم در خانه شماره ۱۱ و… و اتم اورانیوم در خانه شماره ۹۲ قرار دارد. یعنی دارای ۹۲ پروتون است.

ایزوتوپ های اورانیوم

تعداد نوترون ها در اتم های مختلف یک عنصر همواره یکسان نیست که برای مشخص کردن آنها از کلمه ایزوتوپ استفاده می شود. بنابراین اتم های مختلف یک عنصر را ایزوتوپ می گویند. مثلاً عنصر هیدروژن سه ایزوتوپ دارد: هیدروژن معمولی که فقط یک پروتون دارد و فاقد نوترون است. هیدروژن سنگین یک پروتون و یک نوترون دارد که به آن دوتریم گویند و نهایتاً تریتیم که از دو نوترون و یک پروتون تشکیل شده و ناپایدار است و طی زمان تجزیه می شود.

ایزوتوپ سنگین هیدروژن یعنی دوتریم در نیروگاه های اتمی کاربرد دارد و از الکترولیز آب به دست می آید. در جنگ دوم جهانی آلمانی ها برای ساختن نیروگاه اتمی و تهیه بمب اتمی در سوئد و نروژ مقادیر بسیار زیادی آب سنگین تهیه کرده بودند که انگلیسی ها متوجه منظور آلمانی ها شده و مخازن و دستگاه های الکترولیز آنها را نابود کردند.

غالب عناصر ایزوتوپ دارند از آن جمله عنصر اورانیوم، چهار ایزوتوپ دارد که فقط دو ایزوتوپ آن به علت داشتن نیمه عمر نسبتاً بالا در طبیعت و در سنگ معدن یافت می شوند. این دو ایزوتوپ عبارتند از اورانیوم ۲۳۵ و اورانیوم ۲۳۸ که در هر دو ۹۲ پروتون وجود دارد ولی اولی ۱۴۳ و دومی ۱۴۶ نوترون دارد. اختلاف این دو فقط وجود ۳ نوترون اضافی در ایزوتوپ سنگین است ولی از نظر خواص شیمیایی این دو ایزوتوپ کاملاً یکسان هستند و برای جداسازی آنها از یکدیگر حتماً باید از خواص فیزیکی آنها یعنی اختلاف جرم ایزوتوپ ها استفاده کرد. ایزوتوپ اورانیوم ۲۳۵ شکست پذیر است و در نیروگاه های اتمی از این خاصیت استفاده می شود و حرارت ایجاد شده در اثر این شکست را تبدیل به انرژی الکتریکی می نمایند. در واقع ورود یک نوترون به درون هسته این اتم سبب شکست آن شده و به ازای هر اتم شکسته شده ۲۰۰ میلیون الکترون ولت انرژی و دو تکه شکست و تعدادی نوترون حاصل می شود که می توانند اتم های دیگر را بشکنند. بنابراین در برخی از نیروگاه ها ترجیح می دهند تا حدی این ایزوتوپ را در مخلوط طبیعی دو ایزوتوپ غنی کنند و بدین ترتیب مسئله غنی سازی اورانیوم مطرح می شود.

ساختار نیروگاه اتمی

به طور خلاصه چگونگی کارکرد نیروگاه های اتمی را بیان کرده و ساختمان درونی آنها را مورد بررسی قرار می دهیم.

طی سال های گذشته اغلب کشورها به استفاده از این نوع انرژی هسته ای تمایل داشتند و حتی دولت ایران ۱۵ نیروگاه اتمی به کشورهای آمریکا، فرانسه و آلمان سفارش داده بود. ولی خوشبختانه بعد از وقوع دو حادثه مهم تری میل آیلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبیل (Tchernobyl) در روسیه در ۲۶ آوریل ۱۹۸۶، نظر افکار عمومی نسبت به کاربرد اتم برای تولید انرژی تغییر کرد و ترس و وحشت از جنگ اتمی و به خصوص امکان تهیه بمب اتمی در جهان سوم، کشورهای غربی را موقتاً مجبور به تجدیدنظر در برنامه های اتمی خود کرد.

نیروگاه اتمی در واقع یک بمب اتمی است که به کمک میله های مهارکننده و خروج دمای درونی به وسیله مواد خنک کننده مثل آب و گاز، تحت کنترل درآمده است. اگر روزی این میله ها و یا پمپ های انتقال دهنده مواد خنک کننده وظیفه خود را درست انجام ندهند، سوانح متعددی به وجود می آید و حتی ممکن است نیروگاه نیز منفجر شود، مانند فاجعه نیروگاه چرنوبیل شوروی. یک نیروگاه اتمی متشکل از مواد مختلفی است که همه آنها نقش اساسی و مهم در تعادل و ادامه حیات آن را دارند. این مواد عبارت اند از:

۱- ماده سوخت متشکل از اورانیوم طبیعی، اورانیوم غنی شده، اورانیوم و پلوتونیم است.

عمل سوختن اورانیوم در داخل نیروگاه اتمی متفاوت از سوختن زغال یا هر نوع سوخت فسیلی دیگر است. در این پدیده با ورود یک نوترون کم انرژی به داخل هسته ایزوتوپ اورانیوم ۲۳۵ عمل شکست انجام می گیرد و انرژی فراوانی تولید می کند. بعد از ورود نوترون به درون هسته اتم، ناپایداری در هسته به وجود آمده و بعد از لحظه بسیار کوتاهی هسته اتم شکسته شده و تبدیل به دوتکه شکست و تعدادی نوترون می شود. تعداد متوسط نوترون ها به ازای هر ۱۰۰ اتم شکسته شده ۲۴۷ عدد است و این نوترون ها اتم های دیگر را می شکنند و اگر کنترلی در مهار کردن تعداد آنها نباشد واکنش شکست در داخل توده اورانیوم به صورت زنجیره ای انجام می شود که در زمانی بسیار کوتاه منجر به انفجار شدیدی خواهد شد.

در واقع ورود نوترون به درون هسته اتم اورانیوم و شکسته شدن آن توام با انتشار انرژی معادل با ۲۰۰ میلیون الکترون ولت است این مقدار انرژی در سطح اتمی بسیار ناچیز ولی در مورد یک گرم از اورانیوم در حدود صدها هزار مگاوات است. که اگر به صورت زنجیره ای انجام شود، در کمتر از هزارم ثانیه مشابه بمب اتمی عمل خواهد کرد.
اما اگر تعداد شکست ها را در توده اورانیوم و طی زمان محدود کرده به نحوی که به ازای هر شکست، اتم بعدی شکست حاصل کند شرایط یک نیروگاه اتمی به وجود می آید. به عنوان مثال نیروگاهی که دارای ۱۰ تن اورانیوم طبیعی است قدرتی معادل با ۱۰۰ مگاوات خواهد داشت و به طور متوسط ۱۰۵ گرم اورانیوم ۲۳۵ در روز در این نیروگاه شکسته می شود و همان طور که قبلاً گفته شد در اثر جذب نوترون به وسیله ایزوتوپ اورانیوم ۲۳۸ اورانیوم ۲۳۹ به وجود می آمد که بعد از دو بار انتشار پرتوهای بتا (یا الکترون) به پلوتونیم ۲۳۹ تبدیل می شود که خود مانند اورانیوم ۲۳۵ شکست پذیر است. در این عمل ۷۰ گرم پلوتونیم حاصل می شود. ولی اگر نیروگاه سورژنراتور باشد و تعداد نوترون های موجود در نیروگاه زیاد باشند مقدار جذب به مراتب بیشتر از این خواهد بودو مقدار پلوتونیم های به وجود آمده از مقدار آنهایی که شکسته می شوند بیشتر خواهند بود. در چنین حالتی بعد از پیاده کردن میله های سوخت می توان پلوتونیم به وجود آمده را از اورانیوم و فرآورده های شکست را به کمک واکنش های شیمیایی بسیار ساده جدا و به منظور تهیه بمب اتمی ذخیره کرد.

۲- نرم کننده ها موادی هستند که برخورد نوترون های حاصل از شکست با آنها الزامی است و برای کم کردن انرژی این نوترون ها به کار می روند. زیرا احتمال واکنش شکست پی در پی به ازای نوترون های کم انرژی بیشتر می شود. آب سنگین (D2O) یا زغال سنگ (گرافیت) به عنوان نرم کننده نوترون به کار برده می شوند.

۳- میله های مهارکننده: این میله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآکتور اتمی الزامی است و مانع افزایش ناگهانی تعداد نوترون ها در قلب رآکتور می شوند. اگر این میله ها کار اصلی خود را انجام ندهند، در زمانی کمتر از چند هزارم ثانیه قدرت رآکتور چند برابر شده و حالت انفجاری یا دیورژانس رآکتور پیش می آید. این میله ها می توانند از جنس عنصر کادمیم و یا بور باشند.

۴- مواد خنک کننده یا انتقال دهنده انرژی حرارتی: این مواد انرژی حاصل از شکست اورانیوم را به خارج از رآکتور انتقال داده و توربین های مولد برق را به حرکت در می آورند و پس از خنک شدن مجدداً به داخل رآکتور برمی گردند. البته مواد در مدار بسته و محدودی عمل می کنند و با خارج از محیط رآکتور تماسی ندارند. این مواد می توانند گاز CO2 ، آب، آب سنگین، هلیم گازی و یا سدیم مذاب باشند.


انواع راکتور

راکتورهای اتمی را معمولا برحسب خنک کننده، کند کننده، نوع و درجه غنای سوخت در آن طبقه بندی می کنند. معروفترین راکتورهای اتمی، راکتورهایی هستند که از آب سبک به عنوان خنک کننده و کند کننده و اورانیوم غنی شده(۲ تا ۴ درصد اورانیوم ۲۳۵) به عنوان سوخت استفاده می کنند. این راکتورها عموما تحت عنوان راکتورهای آب سبک(LWR ) شناخته می شوند. راکتورهای WWER,BWR,PWR از این دسته اند. نوع دیگر، راکتورهایی هستند که از گاز به عنوان خنک کننده، گرافیت به عنوان کند کننده و اورانیوم طبیعی یا کم غنی شده به عنوان سوخت استفاده می کنند. این راکتورها به گاز- گرافیت معروفند. راکتورهای HTGR,AGR,GCR از این نوع می باشند. راکتور PHWR راکتوری است که از آب سنگین به عنوان کندکننده و خنک کننده و از اورانیوم طبیعی به عنوان سوخت استفاده می کند. نوع کانادایی این راکتور به CANDU موسوم بوده و از کارایی خوبی برخوردار می باشد. مابقی راکتورها مثل FBR (راکتوری که از مخلوط اورانیوم و پلوتونیوم به عنوان سوخت و سدیم مایع به عنوان خنک کننده استفاده کرده و فاقد کند کننده می باشد) LWGR(راکتوری که از آب سبک به عنوان خنک کننده و از گرافیت به عنوان کند کننده استفاده می کند) از فراوانی کمتری برخوردار می باشند. در حال حاضر، راکتورهای PWR و پس از آن به ترتیب PHWR,WWER,BWR فراوانترین راکتورهای قدرت در حال کار جهان می باشند.

 به لحاظ تاریخی اولین راکتور اتمی در آمریکا بوسیله شرکت \”وستینگهاوس\” و به منظور استفاده در زیر دریائیها ساخته شد. ساخت این راکتور پایه اصلی و استخوان بندی تکنولوژی فعلی نیروگاههای اتمیPWR را تشکیل داد. سپس شرکت جنرال الکتریک موفق به ساخت راکتورهایی از نوع BWR گردید. اما اولین راکتوری که اختصاصا جهت تولید برق طراحی شده، توسط شوروی و در ژوئن ۱۹۵۴در \”آبنینسک\” نزدیک مسکو احداث گردید که بیشتر جنبه نمایشی داشت، تولید الکتریسیته از راکتورهای اتمی در مقیاس صنعتی در سال ۱۹۵۶ در انگلستان آغاز گردید. تا سال ۱۹۶۵ روند ساخت نیروگاههای اتمی از رشد محدودی برخوردار بود اما طی دو دهه ۱۹۶۶ تا ۱۹۸۵ جهش زیادی در ساخت نیروگاههای اتمی بوجود آمده است. این جهش طی سالهای ۱۹۷۲ تا ۱۹۷۶ که بطور متوسط هر سال ۳۰ نیروگاه شروع به ساخت می کردند بسیار زیاد و قابل توجه است. یک دلیل آن شوک نفتی اوایل دهه ۱۹۷۰ می باشد که کشورهای مختلف را برآن داشت تا جهت تأمین انرژی مورد نیاز خود بطور زاید الوصفی به انرژی هسته ای روی آورند. پس از دوره جهش فوق یعنی از سال ۱۹۸۶ تاکنون روند ساخت نیروگاهها به شدت کاهش یافته بطوریکه بطور متوسط سالیانه ۴ راکتور اتمی شروع به ساخت می شوند.

کشورهای مختلف در تولید برق هسته ای روند گوناگونی داشته اند. به عنوان مثال کشور انگلستان که تا سال ۱۹۶۵ پیشرو در ساخت نیروگاه اتمی بود، پس از آن تاریخ، ساخت نیروگاه اتمی در این کشور کاهش یافت، اما برعکس در آمریکا به اوج خود رسید. کشور آمریکا که تا اواخر دهه ۱۹۶۰ تنها ۱۷ نیروگاه اتمی داشت در طول دهه های ۱۹۷۰و ۱۹۸۰ بیش از ۹۰ نیروگاه اتمی دیگر ساخت. این مسئله نشان دهنده افزایش شدید تقاضای انرژی در آمریکاست. هزینه تولید برق هسته ای در مقایسه با تولید برق از منابع دیگر انرژی در امریکا کاملا قابل رقابت می باشد. هم اکنون فرانسه با داشتن سهم ۷۵ درصدی برق هسته ای از کل تولید برق خود درصدر کشورهای جهان قرار دارد. پس از آن به ترتیب لیتوانی(۷۳درصد)، بلژیک(۵۷درصد)، بلغارستان و اسلواکی(۴۷درصد) و سوئد (۸/۴۶درصد) می باشند. آمریکا نیز حدود ۲۰ درصد از تولید برق خود را به برق هسته ای اختصاص داده است.

گرچه ساخت نیروگاههای هسته ای و تولید برق هسته ای در جهان از رشد انفجاری اواخر دهه ۱۹۶۰ تا اواسط ۱۹۸۰ برخوردار نیست اما کشورهای مختلف همچنان درصدد تأمین انرژی مورد نیاز خود از طریق انرژی هسته ای می باشند. طبق پیش بینی های به عمل آمده روند استفاده از برق هسته ای تا دهه های آینده همچنان روند صعودی خواهد داشت. در این زمینه، منطقه آسیا و اروپای شرقی به ترتیب مناطق اصلی جهان در ساخت نیروگاه هسته ای خواهند بود. در این راستا، ژاپن با ساخت نیروگاههای اتمی با ظرفیت بیش از ۲۵۰۰۰ مگا وات درصدر کشورها قرار دارد. پس از آن چین، کره جنوبی، قزاقستان، رومانی، هند و روسیه جای دارند. استفاده از انرژی هسته ای در کشورهای کاندا، آرژانتین، فرانسه، آلمان، آفریقای جنوبی، سوئیس و آمریکا تقریبا روند ثابتی را طی دو دهه آینده طی خواهد کرد.

 

غنی سازی اورانیم

سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ ۲۳۵ به مقدار ۷/۰ درصد و اورانیوم ۲۳۸ به مقدار ۳/۹۹ درصد تشکیل شده است. سنگ معدن را ابتدا در اسید حل کرده و بعد از تخلیص فلز، اورانیوم را به صورت ترکیب با اتم فلئور (F) و به صورت مولکول اورانیوم هکزا فلوراید UF6 تبدیل می کنند که به حالت گازی است. سرعت متوسط مولکول های گازی با جرم مولکولی گاز نسبت عکس دارد این پدیده را گراهان در سال ۱۸۶۴ کشف کرد. از این پدیده که به نام دیفوزیون گازی مشهور است برای غنی سازی اورانیوم استفاده می کنند.در عمل اورانیوم هکزا فلوراید طبیعی گازی شکل را از ستون هایی که جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور می دهند. منافذ موجود در جسم متخلخل باید قدری بیشتر از شعاع اتمی یعنی در حدود ۵/۲ انگشترم (۰۰۰۰۰۰۰۲۵/۰ سانتیمتر) باشد. ضریب جداسازی متناسب با اختلاف جرم مولکول ها است.روش غنی سازی اورانیوم تقریباً مطابق همین اصولی است که در اینجا گفته شد. با وجود این می توان به خوبی حدس زد که پرخرج ترین مرحله تهیه سوخت اتمی همین مرحله غنی سازی ایزوتوپ ها است زیرا از هر هزاران کیلو سنگ معدن اورانیوم ۱۴۰ کیلوگرم اورانیوم طبیعی به دست می آید که فقط یک کیلوگرم اورانیوم ۲۳۵ خالص در آن وجود دارد. برای تهیه و تغلیظ اورانیوم تا حد ۵ درصد حداقل ۲۰۰۰ برج از اجسام خلل و فرج دار با ابعاد نسبتاً بزرگ و پی درپی لازم است تا نسبت ایزوتوپ ها تا از برخی به برج دیگر به مقدار ۰۱/۰ درصد تغییر پیدا کند. در نهایت موقعی که نسبت اورانیوم ۲۳۵ به اورانیوم ۲۳۸ به ۵ درصد رسید باید برای تخلیص کامل از سانتریفوژهای بسیار قوی استفاده نمود. برای ساختن نیروگاه اتمی، اورانیوم طبیعی و یا اورانیوم غنی شده بین ۱ تا ۵ درصد کافی است. ولی برای تهیه بمب اتمی حداقل ۵ تا ۶ کیلوگرم اورانیوم ۲۳۵ صددرصد خالص نیاز است.

عملا در صنایع نظامی از این روش استفاده نمی شود و بمب های اتمی را از پلوتونیوم ۲۳۹ که سنتز و تخلیص شیمیایی آن بسیار ساده تر است تهیه می کنند. عنصر اخیر را در نیروگاه های بسیار قوی می سازند که تعداد نوترون های موجود در آنها از صدها هزار میلیارد نوترون در ثانیه در سانتیمتر مربع تجاوز می کند. عملاً کلیه بمب های اتمی موجود در زراد خانه های جهان از این عنصر درست می شود.روش ساخت این عنصر در داخل نیروگاه های اتمی به صورت زیر است: ایزوتوپ های اورانیوم ۲۳۸ شکست پذیر نیستند ولی جاذب نوترون کم انرژی (نوترون حرارتی هستند. تعدادی از نوترون های حاصل از شکست اورانیوم ۲۳۵ را جذب می کنند و تبدیل به اورانیوم ۲۳۹ می شوند. این ایزوتوپ از اورانیوم بسیار ناپایدار است و در کمتر از ده ساعت تمام اتم های به وجود آمده تخریب می شوند. در درون هسته پایدار اورانیوم ۲۳۹ یکی از نوترون ها خودبه خود به پروتون و یک الکترون تبدیل می شود.بنابراین تعداد پروتون ها یکی اضافه شده و عنصر جدید را که ۹۳ پروتون دارد نپتونیم می نامند که این عنصر نیز ناپایدار است و یکی از نوترون های آن خود به خود به پروتون تبدیل می شود و در نتیجه به تعداد پروتون ها یکی اضافه شده و عنصر جدید که ۹۴ پروتون دارد را پلوتونیم می نامند. این تجربه طی چندین روز انجام می گیرد.

تعاریف اصطلاحات در فیزیک هسته ای

ویژه هسته: یک هسته خاص با اعداد پروتونی (Z) و نوترونی (N) معین را گویند.

ایزوتوپ ها: ویژه هسته هایی با پروتون های یکسان و نوترون های مختلف را گویند.مثال:ایزوتوپ هیدروژن ۲۱H و ۳۱H می باشند.

ایزوتون ها: ویژه هسته هایی با نوترون برابر و پروتون مختلف را گویند.

ایزوبارها: ویژه هسته هایی با عدد جرمی A ی برابر (A=Z+N) را می گویند.

ایزومر: ویژه هسته هایی در حالت بر انگیخته با نیم عمر قابل اندازه گیری را ایزومر می نامند.

نوکلئون: ذرات تشکیل دهنده هسته) نوترون یا پروتون ) نوکلئون نام دارند.

مزون ها: ذراتی هستند با جرمی بین جرم الکترون و جرم پروتون. شناخته شده ترین مزون ها عبارتند از: مزون های پی که نقش مهمی در نیروهای هسته ای باز می کند و مزون های مو که در پدیده های پرتو کیهانی مهم است.

پوزیترون: الکترون با بار مثبت به عبارتی ذره ای با جرمی برابر جرم الکترون و باری برابر بار الکترون با علامت مثبت.

فوتون: کوانتوم تابش الکترومغناطیسی که معمولاً بصورت نور اشعه ایکس یا اشعه گاما ظاهر می شودبه عبارت دیگر کوچکترین ذرات سازنده نور فوتون ها هستند.

اسپین: صرفنظر از انرژی مربوط به چرخش الکترون به دور هسته اتمی الکترون نیز انرژی اضافی دیگری دارد که مربوط به چرخش حول محور خود می باشد .علاوه بر الکترون ذراتی دیگر مثل پروتون ، نوترون و فنون ها نیز به نوبه خود دارای اسپین می باشد.

آب سنگین: اصطلاحی که معمولا برای مولکول آب دارای دو اتم هیدروژن سنگین بکار می رود در این مولکول دو اتم دوتریوم بجای دو اتم هیدروژن جایگزین می شود (D2o). آب سنگین دارای خواص غیر عادی بوده و در راکتور های هسته ای نقش ایفا می کنند.

بتاترون: یک شتاب دهنده چرخه ای است این دستگاه شامل یک محفظه حلقوی بدون هوا است.که بین قطبهای یک الکترومغناطیس جای دارد یک چشمه الکترونی نیز داخل آن محفظه قرار گرفته است.

سوخت هسته ای پلوتنیم: یک عنصر شیمیائی یا عدد اتمی ۹۲ و جرم اتمی ۲۳۹ و یک فلز سمی است. به سادگی در هوا آتش می گیرد. کاربرد عمده پلوتونیم در راکتورهای هسته ای ، بمب های هسته ای ، چشمه ذره آلفا و اشعه گاما در پزشکی است.

کوانتا (Cuonta ): در سال ۱۹۰۱ فیزیکدان معاصر آلمانی ماکس پلانک پیشنهاد نمود که در انتقالات فیزیکی و تاثیرات متقابل اتم های ماده ، انرژی بصورت مقادیر مجزا یا \”بسته های\” کوچک نشر یافته و یا جذب می شوند. در نتیجه مطابق این تئوری، انرژی دارای مقادیر پیوسته ای نمی باشد. این قسمتهای کوچک نام کوانتوم بخود گرفت .

لباسهای بادی (Pneumatic suit ): لباسهای مخصوص که برای کار در هوای آلوده به مواد رادیو اکتیو ) بخارهای گازها ، ذرات بسیار ریز) بکار می رود .

مهندسی هسته ای:شاخه ای از مهندسی مواد که انرژی هسته ای و نیز موارد استفاده از آن را برای احتیاجات کلی و دفاعی مطالعه و بررسی می کند.

 

نوترنیو (Neutrino):ذراتی هستند خنثی که تشخیص و حتی به تله انداختن آنها خیلی مشکل است ضمن واپاشی بتای هسته های اتمی همراه الکترون یا پوزیترون گسیل می شود.

نیم عمر (Half Life): یکی از مهمترین کمیت های مشخصه مواد رادیو اکتیو نیم عمر آنها می باشد و طبق تعریف مدت زمانی است که فعالیت چشمه به نصف مقدار اولیه می رسد .

راکتورهای هسته ای: وسیله که درآن واکنش شکافت زنجیری کنترل شده انجام می شود. راکتور هسته ای نام دارد. اورانیوم و پلوتونیم به عنوان سوخت هسته ای به کار می رود.

پرتوهای کیهانی:تابش های کیهانی عبارتست از ذرات مثبت تند (پروتون ها ) و شماری ذرات آلفا و هسته های دیگر ذرات اولیه. پرتوهای کیهانی دارای انرژی عظیم از مرتبه میلیارد الکترون ولت است گاهی این انرژی به مقادیر حیرت آور از مرتبه ۲۱ ev 10می رسد این پرتوها قادرند تا عمق اقیانوس ها و زمین هم نفوذ کنند.

جرم سکون (Rest Mass): جرم یک ذره ای که سرعت آن صفر بوده و یا صفر می شود را جرم سکون گویند.

جرم بحرانی سوخت هسته ای (Critical Mass): جرم بحرانی برای انجام یک واکنش زنجیری شکست عبارتست از کمترین مقدار سوخت هسته ای بطوریکه هر دوره نوترون باعث تولید یک دوره بعدی یا همان تعداد نوترون گردد یعنی کاهش نوترون در سوخت هسته ای بطور کامل جبران شود.

تعریف جرم بحرانی: کمترین مقدار لازم جرم فیزیکی ماده سوختنی جهت سوختن را جرم بحرانی گویند

 

 

 

 

منبع :پدیدا بزرگترین مرجع علمی ایرانیان

ارسال نظر